1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
use super::*;
use ast;
pub trait RleCompilable {
fn with_ast<F, R>(&self, k: F) -> R
where F: FnOnce(&ast::Program) -> R;
fn rle_compile(&self) -> Box<Program> {
self.with_ast(compile)
}
}
pub fn compile(program: &ast::Program) -> Box<Program> {
let mut compiler = Compiler::new();
compiler.compile(program);
compiler.into_program()
}
pub struct Compiler {
instructions: Vec<Statement>,
last_command: Command,
last_repeat: Count,
}
impl Compiler {
pub fn new() -> Self {
Compiler {
instructions: Vec::new(),
last_command: Command::Right,
last_repeat: 0,
}
}
pub fn compile(&mut self, program: &[ast::Statement]) {
for instruction in program {
match *instruction {
ast::Statement::Cmd(op_code) => self.issue_op(op_code),
ast::Statement::Loop(ref body) => self.issue_loop(compile(body)),
}
}
}
pub fn into_program(mut self) -> Box<Program> {
self.push_op();
self.instructions.into_boxed_slice()
}
fn push_op(&mut self) {
if self.last_repeat > 0 {
self.instructions.push(Statement::Cmd(self.last_command, self.last_repeat));
self.last_command = Command::Right;
self.last_repeat = 0;
}
}
fn issue_op(&mut self, cmd: Command) {
if cmd == self.last_command {
if let Some(last_repeat) = self.last_repeat.checked_add(1) {
self.last_repeat = last_repeat;
} else {
self.push_op();
self.last_repeat = 1;
}
} else {
self.push_op();
self.last_command = cmd;
self.last_repeat = 1;
}
}
fn issue_loop(&mut self, body: Box<Program>) {
self.push_op();
self.instructions.push(Statement::Loop(body));
}
}
#[cfg(test)]
mod tests {
use super::*;
use ast::Statement as Src;
use super::Statement as Obj;
use super::Command::*;
#[test]
fn right_compiles() {
assert_compile(&[Src::Cmd(Right)], &[Obj::Cmd(Right, 1)]);
}
#[test]
fn three_rights_compile() {
assert_compile(&[Src::Cmd(Right), Src::Cmd(Right), Src::Cmd(Right)],
&[Obj::Cmd(Right, 3)]);
}
#[test]
fn two_rights_two_ups_compile() {
assert_compile(&[Src::Cmd(Right), Src::Cmd(Right), Src::Cmd(Up), Src::Cmd(Up)],
&[Obj::Cmd(Right, 2), Obj::Cmd(Up, 2)]);
}
#[test]
fn loop_compiles() {
assert_compile(&[Src::Cmd(In), src_mk_loop(vec![Src::Cmd(Right)]), Src::Cmd(In)],
&[Obj::Cmd(In, 1), mk_loop(vec![Obj::Cmd(Right, 1)]), Obj::Cmd(In, 1)]);
}
fn assert_compile(src: &[ast::Statement], expected: &[Statement]) {
let actual = compile(src);
assert_eq!(&*actual, expected);
}
fn src_mk_loop(body: Vec<Src>) -> Src {
Src::Loop(body.into_boxed_slice())
}
fn mk_loop(body: Vec<Statement>) -> Statement {
Obj::Loop(body.into_boxed_slice())
}
}
impl RleCompilable for ast::Program {
fn with_ast<F, R>(&self, k: F) -> R
where F: FnOnce(&ast::Program) -> R
{
k(self)
}
}